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ABSTRACT

In the present report we make a mathematically rigorous investigation of
the dispersion relation for small amplitude plasma oscillations of definite
wave-number vector which are excited in an initially Maxwellian plasma. We
work within the domain of the usual linearized Vlasov theory and concentrate
our attention mainly on the case when the dimensionless quantity a (rDk)2

is a small enough positive number, r D being the pertinent Debye length and
k the magnitude of the wave-number vector of the plasma oscillation of inter-
est. More precisely, we study in the limit a - +0 the so-called Landau de-
nominator or plasma dispersionfunction A(z) 1 + a - 7T/2z ez 2 erfc(z) cor-
responding to such a plasma. We show that in this limit A( z) has exactly two
zeros (complex conjugates of one another) in the half-plane Re z < 0 which
lie closer tothe imaginary z axis than all the other zeros of A(z) in this half-
plane. We also establish rigorous asymptotic formulasfor the realand imag-
inary parts of these two nearest zeros for a - +0. As expected, these for-
mulas agree essentially, but not exactly, with the corresponding results found
by Landau some eighteen years ago. The discrepancy arises in the factor
e-3/ 2 which occurs in our formula for the imaginary part of these nearest
zeros in the cited limit, the absolute value of this imaginary part being pro-
portional to the Landau damping rate (under the conditions of Ref. 5). Our
results for the location of the zeros in question agree with results obtained
by other authors by nonrigorous methods.
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RIGOROUS TREATMENT OF THE PROPAGATION
AND DAMPING OF SMALL-AMPLITUDE PLASMA WAVES

IN AN INITIALLY MAXWELLIAN PLASMA

1. INTRODUCTION

As is well known, the long-time behavior of plasma oscillations was treated by
Landau (1) in a paper published about eighteen years ago. One of the most significant
contributions of this paper was the derivation of an explicit expression for the damping
of long-wavelength plasma waves excited in an initially Maxwellian plasma.

It will be recalled that Landau determined this long-time behavior by employing
Laplace-transform techniques to solve the linearized Vlasov equation and the associated
Poisson equation. In this way, he discovered an expression for the electric potential
induced by plasma disturbances which has the form of an integral over a suitable Brom-
wich path in the plane of the Laplace-transform variable s. For an initially Maxwellian
plasma, the familiar denominator of the integrand of this contour integral is proportional
to the function

A(z) - + a - Ur1"2 z eZ erfc(z), (1.1)

where z = s/wP(2a)1 /2 and a = (rDk) 2 , wop and rD being the usual plasma frequency and
Debye radius, respectively, and k the wavenumber of the plasma oscillation of interest.*1

It will also be recalled that a basic preliminary step in Landau's study of the long-
time dependence of the above electric potential was his famous investigation of the zeros
of A(z). There are several easily proved properties of these zeros. For instance, it
follows readily from (1.1) that A(z) = A(z-), so that these zeros always occur in complex
conjugate pairs. It can also be proved that A( z) has an infinite number of zeros for each
choice of a. t Finally, one can show that all of these zeros lie in the half-plane Re z < 0
and that they are all simple. § However, excluding the present report, we are not aware
of any proof of the fact that, in the limit a - +0, two of the zeros of A(z), which are per-
force complex conjugates of one another, lie closer to the imaginary z axis than all the
other zeros of A(z). As is widely known, Landau (1) did not, strictly speaking, prove this

*That the denominator of interest can be written inthe form(l.1) for an initially Maxwellian
plasma is shown, for example, in Ref. 2.

t Although the situation of physical interest is a > o, it will prove useful in this report for
mathematical purposes to let a vanish or even to give it complex values. If no remark
to the contrary is made, a should be understood to be a fixed nonnegative number.

$A(z) has an infinite number of zeros even when a is taken to be an arbitrary complex
number. To prove this assertion, we observe that A( z) is an entire function of z of
order 2. Hence it has an infinite number of zeros unless it is of the form P( z) exp[Q( z)],
where P(z) is a polynomial and Q(z) is quadratic in z, by Hadamard's factorization the-
orem (see, for example, E. C. Titchmarsh, 'Theory of Functions," Oxford University
Press, London, 1939, 2nd ed., p. 250). Since this is not the case here, the present A(z)
has an infinite number of zeros.

§For a proof that A( z) i 0 when Re z > o and a > 0 see, for example, Sec. VI of Ref. 3.
Dr. J. N. Hayes (private communication) has pointed out that the simple nature of the
zeros of A(z) for the case a > o can be established in a completely elementary way by
evaluating dA( z)/dz at the zeros in question and by using the fact thatnone of these zeros
is in the half-plane Re z > 0 in this case.
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fact. Instead, he implicitly assumed it and this assumption aided him in an essential way
in actually calculating the location of these nearest zeros for a - +0. The reader will
recall that the existence of these last zeros plays a basic role in Landau's proof of his
result that the electric potential induced in an initially Maxwellian plasma by suitable
initial perturbations is damped exponentially in the long-time limit, the corresponding
damping rate being, as expected, proportional to the real part of the above closest zeros.
Reference 4 contains detailed criticisms, on grounds of mathematical rigor, of Landau's
computation of these zeros and of his conclusions concerning the cited long-time behavior.

The main contribution of this report is to confirm Landau's conclusions on the zeros
of A(z) for a - +0 in all essential respects by the use of strict mathematical procedures.
For rigorous treatments of the long-time behavior of the electric potential, the reader is
referred to two recent studies (5,6).

It is perhaps of interest to motivate the precise mathematical discussions of the
succeeding sections of this report. We begin by recalling that the closest zeros
found by Landau have the following essential qualitative properties in the limit a - +0:
their real parts tend to -0 and their imaginary parts approach the respective limits
+io and -ic. It is also of interest in the present connection to notice that the aux-
iliary function D(z) defined by Eq. (2.1) is equal to A(z) plus 771/2 zez 2. Heuristi-
cally, one can easily see that D(z) has two complex conjugate, purely imaginary, zeros
which tend to +ico and -ico, respectively, as a - +0. The term 71/2 zez 2 is thus purely
imaginary and its absolute value tends to zero exponentially at the position of these zeros
of D( z) in the cited limit. From this fact, one is led to expect, via simple heuristic con-
siderations, that there are two complex conjugate zeros of A(z) which approach these
two purely imaginary zeros of D(z) as a - +0. On the basis of such reasoning, the pres-
ent author began to believe very strongly that the two zeros of A(z) just mentioned were
in fact the zeros of this function closest to the imaginary axis when a - +0, a belief which
is fully confirmed in this report.

A rigorous discussion of the purely imaginary zeros of D(z) is carried out in Sec. 2.
Results of this discussion are applied in Sec. 3 to derive an explicit asymptotic formula,
valid when a - +0, for a certain zero of A(z), say z,(a), which lies in the quadrant of the
z plane determined by the simultaneous inequalities Re z < 0 and Im z > 0 . This for-
mula yields an expression for the imaginary part of z,(a) in agreement with the corre-
sponding result of Landau. On the other hand, the real part of z,(a) obtained from the
said formula differs from this author's value by the factor e-3/2. Hence we find for
a e +0 that the long-time damping rate of small amplitude plasma oscillations excited in
an initially Maxwellian plasma (under the conditions stated in Ref. 5) differs from
Landau's damping rate by the cited factor. This is precisely the correction factor pointed
out, albeit on unrigorous grounds, by other investigators.* Finally, in Sec. 4 we establish
that z,(a) and the zero complex conjugate to it lie closer to the imaginary axis than all
the other zeros of A(z) when a -e +0.

2. ZEROS OF D( z) ON THE IMAGINARY AXIS

In this section we shall study in detail the properties of the purely imaginary zeros of

D(z) - 1 + a + -0/2 zeZ2 erf(z) . (2.1)

The equation D(z) = D(z), implied by (2.1), entails that the zeros of D(z) always
occur in complex conjugate pairs. Observe also that (1.1), (2.1), and the identity

*See, for example, page 520 of Ref. 7 or Eq. (6.3) of Ref. 2.
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erf(z) + erfc(z) = 1 (2.2)

imply the following relation between A(z) and D(z):

I/2 2A( z) =- D( z) - 7T112 z e z (2.3)

For purely imaginary values iy of z, (2.1) can be written in the form

D(iy) = 1 + a - F(y), (2.1?)

where

y
F(y) - 2y e-y2 J e7

l2 d7. (2.4)
0

This last function has the following asymptotic behavior for I y 1 a,:

n

= 1 + E yym + o(1yr -2(n+1)), (2.5)
m I 1

where n = 1, 2, * and where

ym-1 * 3 * -. *( 2m - 1)/2m (2.6)

for m = 1, 2, - -. One can obtain (2.5) by employing (2.2) and the asymptotic formula

n

7T1/2 zez erfc(z) = 1 + E (-1)mY Z-2m + O (IzI2( 1)) (2.7)
m=1

which holds for each positive integer n, provided that I zI - o and that

I arg z| < - 37E-4 4'

e being independent of z.*

In our study of the zeros of D(iy) in this section, we shall limit ourselves to the
region y > o, in view of the occurrence of the zeros of D(z) in complex-conjugate pairs. t
Before discussing the existence and pertinent properties of the zeros of D(iy), we shall
prove the following useful lemma.

Lemma 2.1. F(y) attains its maximum value at precisely one point of the range 0 < y <co,
say at y=, where f > o. That is,

*Equation (2.7) can be derived from the following results of Ref. 8 (the symbols z and a
occurring in this footnote coincide with symbols employed in this reference; they should
not be confused with the corresponding letters used in the text of the present report):
(a) the connection between Erfc(x) [- (7T1/2/2) erfc(x)] and W 1 4/ 1- 4(x) on page 341;
(b) the asymptotic formula for Wkm(Z) on page 343, observing that this formula holds
for Izi - co and larg zI < (37T/2) - a < (37T/2), as is shown in Sec. 16.4 of Ref. 8 (notice,
incidentally, that k ± m + (1/2) should be replaced by k + m - (1/2) in the last line of page
343).

tNotice, incidentally, that D(z) never has a zero at z = 0 for any given a in the range
a > o of interest here. In fact, (2.1) implies that D(0) = l+a, so that D(0) d o for any
such a.
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F(y) < Ft ) (2.8)

for any y which lies in this range and which is different from e. Moreover,

F( 5) > 1 . (2.9)

Proof. To prove this lemma, we investigate the sign changes of dF(y)/dy for 0 < y <co.
From (2.4),

dF(y) = 2(1 - 2y2 ) ey 2 J e7 di7 + 2y. (2.10)
0

Hence dF(y)/dy > 0 if y is in the closed interval [0,2-1/2], the equality sign holding if
and only if y = o.*

We shall now show that dF(y)/dy has exactly one zero if y is in the range [2-I/2co).
In fact, dF(y)/dy has at most one zero in this range, because the first term of the right-
hand side of (2.10) is strictly decreasing in y in the range in question, while the second
term of this right-hand side always increases with y. That dF(y)/dy has at least one
zero in [2- c/2,o), and that it therefore possesses exactly one zero in this range, follows
by invoking the continuity of dF(y)/dy and the fact that this derivative changes sign in
this range. Indeed, we have seen that dF(2- I/ 2)/dy > 0 and one can also show that
dF(y)/dy < 0 for large enough values of y, since dF(y)/dy o as y co. This limit
property results from the equation

dF(y) -1+ O (2.11)

which is valid for IyI -. co. Equation (2.11) follows by expressing the right-hand side of
(2.10) in terms of F(y) and of elementary functions and by subsequently invoking (2.5).

Let f be the unique point of the range [2- 1 2,o) at which dF(y)/dy vanishes. We
proceed to show that (2.8) holds for any finite y > o such that y + C. In fact, since
dF(y)/dy vanishes solely at the points y = o and y = e of the range [0,co), this deriva-
tive does not change sign in the open intervals (0, ) and (,C o) of the y axis, by con-
tinuity. Hence dF(y)/dy > 0 on (0,e), since dF(y)/dy > 0 on (0,2-I/2], and dF(y)/dy < 0
on (9, c), since dF(y)/dy < 0 for large enough y > o. These sign properties of dF(y)/dy
on (0, e) and (5,,Co) and the continuity of this derivative imply that F(y) is strictly in-
creasing on [t0,61 and strictly decreasing on [6,C), i.e., that (2.8) holds in the stated
sense.

Let us prove (2.9), thus completing the proof of the lemma. Observe first that the
strictly decreasing nature of F(y) on [eco) entails that F(e) - F(y) is strictly increas-
ing on [6,o) . Observe also that F(y) -t 1 as y - co, by virtue of (2.5). From (2.8) and
these remarks, we find for any y > 5:

o < F(6) - F(y)

< lim [F(e) - F(7)] = F(e) - 1

so that (2.9) does indeed hold.

*As usual, [a,b] I [a,b), (a,b3 , and (a,b) stand for the respective intervals a < y < b,
a < y < b, a < y < b, and a < y < b .

4



NAVAL RESEARCH LABORATORY

Evidently, (2.9) implies that only one of the following three cases can occur when
a > o:

a > F(fl - I (2.12a)

a = F(6) - 1 t(2.12b)

0 < a < F(e) - 1. (2.12c)

The case (2.12c) will be the only one of significance in this report. However, for the
sake of completeness, we shall also consider the cases (2.12a) and (2.12b) in the follow-
ing lemma.

Lemma 2.2. D(iy) has the following roots in the range 0 < y < o when the respective
inequalities (2.12a), (2.12b), and (2.12c) hold: no roots, exactly one root (at y =), and
exactly two roots, say yo(a) and yl(a), with 0 < yo(a) < y,(a). Moreover, when (2.12c)
is satisfied, the following inequalities hold:

yo(a) < (2.13a)

y1(a) > y(a) (+ a)/2] * (2.13b)

Proof. Since F(e) is the maximum value of F(y) in the range [0o, co) we obtain from
(2.1') in this range:

D(iy) = [a - F(f) + 1] + IF(f) - F(y) |
(2.14)

> a - F(y) + 1

From (2.14), one sees that D(iy) has no zeros when o < y < co if (2.12a) holds.
When (2.12b) obtains, the fact that (2.8) holds over the stated range and (2.14) imply that
Y = e is the unique nonnegative root of D(iy).

Let us now consider the situation when the condition (2.12c) holds. Write (2.12c) in'
the form 1 < 1 + a < F(f). It should then be clear from the strictly increasing nature of
F(y) on [0, e], from the fact that F(O) = o, and from the continuity of F(y) that F(y) at-
tains the value 1 +a at exactly one point in [0, °] when (2.12c) is satisfied, say at the
point y = yo(a), where 0 < yo(a) < d. Similarly, the strictly decreasing nature of F(y)
in [eco), its continuity, and the property that F(y) - 1 as y - co show that F(y) assumes
the value 1 + a precisely once in [e, o), say at y = yl(a) > 6, provided that (2.12c) holds.
By (2.1'), y,(a) and y,(a) are the only nonnegative roots of D(iy).

To finish the proof of the lemma, we shall prove that (2.13b) holds when (2.12c) does.
For this purpose, we define

G(y) - - D(iy)
(2.15)

C~2 2

= (1+a) - - 2 | e) d7.
y

Equation (2.15) yields:

dG(y) ey2 - 2 2(2.16)
dy-2a [2 -y y (a)I

5
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From (2.16), G(y) is strictly increasing in [0,^(a)] and strictly decreasing in
(y(a),co). Hence G(y) has at most one zero in each of these two intervals. But, from
(2.15), G(y) has the positive zeros y0(a) and y,(a) when (2.12c) is fulfilled, since D(iy)
possesses these zeros in this case. In particular, it is thus evident that the largest of
these two zeros of G(y), i.e., y (a), lies in (y(a),co). Therefore (2.13b) obtains under
the desired restriction (2.12c).

The asymptotic behavior of y,(a) in the limit a +0 is of paramount interest to us.
We shall arrive at explicit asymptotic results for y,(a) in this limit (Lemma 2.3) by
studying the corresponding behavior of the unique positive root of the equation

a - E mY = 0 (2.18)
m= 1

for a > 0 and for any positive integer n. This last root will be called y(n) (a).

The existence of this unique positive root of (2.18) for a > 0 results from the fact
that the function

n
- 2m

T 2m Y
m= 1

is a strictly increasing function of y when o < y < co and that this function tends to +ao{)
as y tends to +0(C), by virtue of the positive nature of all the coefficients 'm-

Lemma 2.3.* For any positive integer n and any a satisfying (2.12c),

Y(n) (a) = (2a) 1/2 w )(a) . (2.19)

Here

n- 1

W(n) (a) = Cmam + O(an) (2.20)
m=0

for n > 1 in the limit a - o, the coefficients cm being independent of a. In particular,

co = 1. -(2.21)

Proof. For each n > 1 and each a > 0, the equation

n
-2n _ 2rn am-' 2(n-m) = 0 (2.22)

m= 1

has a unique positive root, say w(n)(a). For a = 0, this statement is implied immedi-
ately by (2.22) since this equation yields

*Let the y not be required to fulfill (2.6) but solely to have the following properties:
yl > o and 0 > 0 (m > 2). The existence of a unique positive root y(n)(a) (n > 1) of
(2.18) when a > o for the case of these new ym(m > 1) can evidently be established by the
pertinent argument of the text given previously. It should be clear from the proof of
Lemma 2.3 that this lemma holds when the -/m and y(n)(a) are understood in this new
context, provided that (2a)-1 /2 is replaced by (y1 /a)-l/ 2 in (2.19).
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w (0) = 2yl = 1 . (2.23)

To prove the cited statement for the case a > 0, we notice that in this case (2.21) implies
and is implied by (2.18) via the transformation

w = (2a) 1/ (2.24)

From this observation and the structure of (2.24), it is obvious for any a > 0 that the
number of roots of (2.22) of a given sign is the same as the number of roots of (2.18)
with that sign. Hence (2.22) has a unique positive root when a > o .* Therefore, if a > o,
w( )(a) exists and is related to yIn)(a) by the special case (2.19) of the transformation
(2.24).

The root w(n)(a) is simple for each a > O, as can be shown by the usual elementary
differentiation rule and by invoking the positive nature of all the -m. Therefore, if we
regard a in (2.22) as a complex variable, a well-known theorem about simple roots of
algebraic equations with analytic coefficients informs us that w( )(a) can be expanded
in the complex a plane about any fixed a > o in a Taylor series with a positive radius
of convergence.

Consider the Taylor expansion of W(n) (a) about a = 0. It follows from (2.23) that
the coefficient c0 of a0 in this series in powers of a is unity, in agreement with (2.21).
Hence

w (n)(a) = 1 + 0(a), (2.20?)

so that (2.20) holds in the limit a - 0 for the special case n 1.

We proceed to complete the proof of the lemma by showing that (2.20) also holds for
n > 1. To establish this, we shall prove the result that for any fixed positive integers n
and n', such that n' > n, the function

W(n (a) - w(n)(a) (2.25)

has a zero of order n at a = o . That this last result implies (2.20) for n > 1, and is in
fact stronger than (2.20) for each such n, is an immediate consequence of the aforemen-
tioned representability of each w(P)(a) (p = l 2, ... ) by a convergent series in powers
of a for I a small enough.

To establish (2.25), we start by remarking that (2.23) and the isolated nature of the
zeros of analytic functions in their domains of regularity imply that w(n)(a) # 0 for a in
the interior of a circle of nonzero radius centered at a = 0 in the complex a plane. Hence,
for all a in the interior of this circle, we can divide by [w(n)(a)] 2n the equation obtained
from (2.22) when we replace w by W(n)(a) therein, thus obtaining:

E 2m am-l [W(n)(a)] = 1 (2.22')
m 1

Subtracting (2.22') from the parallel equation obeyed by w( (a), we find for such a:

*Of course, the mere existence of a unique positive root of (2.22) for a > o can also be
proved directly from the facts that -/ > 0 and that - am' 1 > 0 (m > 2) in the case of
interest.

tSee, for example, Sec. 14, Ch. 5, of Ref. 9, especially pages 125 and 126.
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rFf. aI-2m -2 . "
E. 2m Ym- 1 { [w( ( a)] _ Iw( ( a)] I; = - E

m=}1 .=n+l
2m m -l [ (n')()]2m

For fixed values of n and of n' > n, let k be the order of the zero of the function
(2.25) at a = 0, so that

w(n' (a) - w(n)(a) = Annak + O(ak+1) (2.27)

in the limit a - 0, XAnn, being a nonzero constant.

With the aid of (2.20?), (2.26), and (2.27), we conclude for any such n and n' in this
limit:

XAnn, k + O(ak+ 1) = 2 7n+1 an + O(an+1) . (2.28)

Since Ann, and yn+ 1 are nonzero, (2.28) implies that k = n , and thus that the function
(2.25) does indeed possess a zero of order n at a = 0 for n' > n.

The determination of the cm by means of (2.6), (2.20), and (2.22) is obvious. In par-
ticular, one finds from these equations that

3 15cl = 2 ' c2 = 8 . (2.29)

An asymptotic formula giving y,(a) in terms of y (n) (a) is furnished
theorem. In this theorem and in the subsequent work of this report, Q,(A)
understood to mean "O(A) in the limit a -* +0."

by the next
should be

Theorem 2.1.* For each positive integer n,

y(a) = y(a) -(Ya =y 1 (a) +O a 2 (2.30)

Proof. Since y,(a) is a zero of D(iy) which is o+(aC1/2) by (2.13b), we obtain from
(2.1?) and (2.5):

E [ (n) ]a - 1'm yl (a)
mn= I

= O+ (a-(n+1))

For any a obeying (2.12c) we define the positive quantity

1 2
w 1(a) -- (2a) /y1(a) *(2.32)

Employing (2.31) and (2.32), we see that w1(a) satisfies the equation

*It is easily seen that the method used to prove Theorem 2.1 can be employed to prove
the following generalization of this theorem. Let the yn(m > 1) and y(n)(a) (n > 1) be as
specified in the first footnote to Lemma 2.3. Let F(y) be a function having the asymp-
totic representation (2.5) for iyl e - in terms of these last ym. Moreover, let F(y) be
such that the function D(iy), which we define by (2.1') in terms of this F(y), has a posi-
tive zero y1(a) tending to zero as a e +0. Then (2.30) holds.

* (2.26)

(2.31)

8



NAVAL RESEARCH LABORATORY 9

n - 2m

E 2mym am- I[ ()] = 1 + O+(an) (2.33)
mn= 1

Setting n = 1 in this equation, we deduce that

wI(ca) = 1 + O+(a) . (2.34)

Subtraction of (2.22?) from (2.33) yields:

n -2m~
E 2mYr amn'[wi (a)] -2m [W(n)(a)] } = ° (an) (2.35)

m= 1

In view of (2.34) and of the fact that this last equation implies that wl(a) - w(n)(a) = O+(a)
we conclude:

[Ew(a)] 2m - [wn)(a)] 2 = - 2m [i + 0+(a)][w,(a) - w a(a)] + O+([wl(a) - (a) ()] 2)

- 2m[wl(a)- w(n)(a)] [I + 0+(a)] .

Because of (2.35) and (2.36),

n

W1((a) - w(n)(a) = 0+(an)/ E 2 rymam (-2m)[l + O+(a)]
(2.37)

= 0+( an).

Equations (2.19), (2.32), and (2.37) imply the assertion (2.30) of the theorem.

Collecting the results (2.19) to (2.21), (2.29), and (2.30), we see that

n- 1
y,(a) = (2a)- 1/2 1 + cm am + 0,(an)

L 1(2.30?)

= (2a) / [1 + 3 a + - a2 + +(a3)l

where the first equality holds, of course, for each n > 2.

3. EXISTENCE OF ZEROS OF LANDAU TYPE

The proof, announced in the Introduction, of the existence of a zero of Landau type in
the second quadrant of the complex z plane and the explicit asymptotic formula for this
zero mentioned there will be presented in this section (Theorem 3.1) on the basis of two
lemmas (Lemmas 3.1 and 3.2).

Consider the equation

w = f(z) (3.1)
where

f(z) D(z)/7r1/ 2 zez

= [(z) + 1/2 zez2]/ 7T1/2 zeZ 2 (3.2)
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Because of (3.2) and of the fact that neither D(z) nor A(z) vanish at z = 0 for a > 0 we
see that the roots of (3.1) for the case w = 1 and for such an a are the same as those of
the equation

A( z) = 0 (3.3)

for the same a. Hence it is natural to expect that "solving" (3.1) for z in terms of w,
when w is in a suitable neighborhood of w = 1 in the complex w plane, would lead to useful
results on the zeros of (3.3). This is indeed the case, as we proceed to demonstrate.

We denote by C(a,,3) a circle in the z plane centered at z = iy,(a) and having a
radius /3y,(a), where 3 is a number independent of a and z such that

0 < / < [2(1 - 8)] 1/2 - 1, (3.4)

8 being also independent of a and z and such that 0 < 8 < 1.

Lemma 3.1. One has*

2 22
{1 + a [1 - 2y1 (a)]}e

y1 (a) (3.5)

- 4a2 [1 + O+(a)] e /

where the first equality holds whenever (2.12c) does. Moreover, for each fixed /8 then
exists a positive number K(,8) independent of a and of z and such that

I f (z) I < K(/3) a3/ 2 e(1+/3) 2
/ 2a (3.6)

for every sufficiently small a > 0 at each point z of C(a,, 3).

Proof. The first equality in (3.5) follows directly from (3.2), (2.1), and the fact that D(z)
has the zero z = iyl(a) whenever (2.12c) holds. This first equality and (2.30') entail the
second equality in (3.5).

To establish (3.6), let us notice that (3.2), (1.1), and (2.7) imply:

f(z) = e1/2 a+ I +o(1) (3.7)

for IzI -mco and (iT/4) + E' < arg z < (37/4) - e', where E' is positive and independent of z
and a, and can be chosen arbitrarily small.

Because of (3.4), each circle C(a,,8) lies completely in the region 7T/4 < arg z < 37/4.
Furthermore, for each fixed / and for a e +0, the distance of each point on C(a,,3) from z = 0
tends to infinity, since y (a) = o+(a / 2 ). Hence we may apply (3.7) to the case when /8
is fixed, a - +O, and z E C(a, ,3). Doing this and invoking elementary inequalities, we find
in this case:

* ( -df(z)f'(z) -dz

10
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If -I ex +0y2('
)/ 2! 2 | 'L z 2 ( Iz |J

(3.8)
2 Y2(a

(1+/3)2 y 1 (a) r 1 +O. \
7T1/2 ( A)y,(.) l 2( 1 - 2 2(_) Vy 14()

The desired inequality (3.6) results by combining (3.8) with (2.30').

Theorem 3.1. In the limit a - +0, A(z) has a zero located at the point

I/2 y (a) e (a
z+(a.) = iy,(a.) + I1 (a- + O+(e-c/ 2 a) (3.9)

, + a. [I - 2y 2(a)]}

of the z plane, where c is a number independent of a and c > 1.

Notice that (2.30') and (3.9) yield:

Re z[(a) - + -2+(a2)] 2 3/ 2e-I2a + 0 ( -c/2[i 1 0+ O(ea a)(3

Except for the precise order terms in (3.9'), the damping decrement computed from this
equation agrees with the one given in Refs. 2 and 7.

Proof: We start by recalling some basic facts about the Lagrange method of reverting
power series. *

For the moment, let us regard f(z) in (3.1) as an arbitrary function of z analytic in
the circle

| - zo I < R (3.10)

Let M be an upper bound of f(z) on this circle and let

wo = f(zO) (3.11)

If f'(z 0 ) 4 0, then Eq. (3.1) has the root

Z = z, + bn(w)- W) (3.12)
n= 1

provided that

*See, for example, Secs. 6.22 and 6.23 of Ref. 10. With the exception of (3.14b), the facts
on the Lagrange method cited in the text of this report are either stated and proved in
these sections of Ref. 10 or follow, via trivial transformations of variables, from results
in the sections in question. Inequality (3.14b) results by combining the first inequality
on page 124 of Ref. 10 with the contour-integral formula for b. on that page. Notice that
the a of this reference is to be identifiedwith the number i f'(z0 ) I of the present report.
Notice also that our M and the M of the quoted sections of Ref. 10 are identical because
of the maximum modulus theorem.

11
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1 R 2 f '(z) 12

Fwo-r n. 6 M

For n = l, 2, . . . , the coef ficients b,, are given by

Innt1l dzn -1t[ z - f0 ( o)bn= I In limzz 0''z.,*z, dzn- 1 f(z) - f(z0 )J

and satisfy the inequality

Ibnl < (R 21 f'(Z,)1/4Mz) x (6M/R21f-(z )2)n

Henceforth we shall set

so that

zo = iy,(a) ,

wo = 0.

We shall also set

R = radius of C(a,/3)

= 8y,(a) .

Lemma 3.1 then allows us to put

M = K(- ) .3/2 e( 1+()2/2a

whenever a > 0 is sufficiently small.

For such values of a, (3.5) implies that f'(z 0 ) i 0 when (3.15) holds. Moreover, for
the present choice of z0 , R, and M, (3.13) holds for w = i in the limit a - +0. In fact,
(3.5), (3.15), (3.18), and (2.30'), in conjunction with (3.4), entail the existence of a positive
number K'(f,) independent of a and such that

R If'(zo)1 2  > kH) 3/2 8/a

NI >(/)
(3.19)

for each sufficiently small a > 0.

Hence (3.12), (3.15), and (3.16) allow us to conclude that, for any such a,

z1(a) = iy 1 (a) + E bn
n= 1

(3.20)

is a root of (3.1) for w = 1, i.e., that zi(a) is a root of A(z) for each a of this type.

Employing (3.14a), (3.15), and (3.5), we find that

(3.13)

(3.14a)

(3. 14b)

(3.15)

(3.16)

(3.17)

(3.18)

12
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b = 1 1/2 y 2 (a) e (3.21)
f '( zo) I + a [I - 2y 12(a)}

if (2.12c) holds.

It is plain from (3.20) and (3.21) that the desired result (3.9) is true if

-bn = +(e c ) (3.22)

with c as specified in the theorem.

To prove (3.22), let us notice first that

M 0 (- 7 / 2 -( 1+ 2 8)/2 )(3.23)
R 2 1 f,(z 0 )1 +a e(.3

as can be proved by reasoning similar to that used to obtain (3.19). We find from (3.14b),
(3.23), and the fact, implied by (3.19), that M/R21 f'(Z 0 ) 120 0 as a - +0:

Ebn; < Jbn1 (72 )(2 f( 3)o(R 2| f (Z,) | 2

(2) (R2 f, z)3)L1R2f,'zO) (3.24)

= 0 (a 7/2e( 1+28)/2a)

Comparing (3.24) with (3.22), it is evident that (3.22) obtains, in particular, for any
number c independent of a and such that 1 < c < 1 + 26. Since such a c has all the
properties required by the theorem, our proof of the latter is complete.

4. PROOF THAT PRECISELY TWO ZEROS OF A(z) IN THE
HALF-PLANE Re z < 0 LIE CLOSEST TO THE IMAGINARY
AXIS FOR a - +0

We shall require three lemmas to show that A (z) has precisely two zeros in the
.ialf-plane Re z < 0 which are closer to the imaginary axis than all the other zeros of
A ( z) in this half-plane in the limit a - +0 .

Lemma 4.1. There exists a positive number p, independent of a and z, such that A(z)
has no zeros in the circle I zI < p.

Proof. Since the function zez erfc(z) vanishes at z = 0 and is continuous at each z,
there exists a positive number p of the type specified in the theorem such that

7l/
2 zez erfc(z)l < 1 (4.1)

whenever I zI < p.

13
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But (1.1) and (4.1) entail for each a > 0 that

A( z) > 1 + a - 7T1/2 I ze z erfc( z) I > 0, (4.2)

which proves the lemma.

Lemma 4.2. Let RI and R2 be arbitrary fixed positive numbers such that R1 2 R2. Then
there exists a positive number /(R 1,R2), independent of a and z, such that A(z) 4 0 for
each real a and for each z which fulfills the two inequalities

R1 < I z(. < R2 )

lRe zJ < u(R 1,R2 ) . (4.4)

Proof. From (1.1) and (2.2), we find for any real a,

g(XY) - - 1/2 Im [A(z)

= Tm {zez2 [1 - erf(z)]}(

so that g(x, y) does not depend on a. Notice that (4.5) and the purely imaginary charac-
ter of erf(iy) mean that

y 2
g(0, y) = ye - (4.5')

We introduce the numbers M(R1 ,R2 ) and p.(R,,R2) as follows. M(R1 ,R2) is taken to be
an upper bound of Iag(x, y)/axI in the closed region (4.3). Obiously, such an upper bound
is positive and can be taken to be independent of a, a choice which will be made here. Let
,u(R1,R2) be any positive number independent of a and z and such that

/.L(R 1, R2) < 1

[1 + M2(R1 ,R2 ) e 2 (4.6)

Let us assume that A(z) has a zero located at a point z = z(a) lying in the inter-
section of the regions (4.3) and (4.4), with M(R1 ,R2 ) and JL(R,,R2) as just specified. It
will now be shown that this assumption leads to a contradiction and hence to a proof of
the lemma.

Denote the real and imaginary parts of z(a) by x(a) and y(a), respectively. Then
(4.5) yields:

g (x(a), 0. (4.7)

Employing (4.7), the differentiability of g(x, y) with respect to x, and the definition of
M(R1,R2 ), we conclude that

Ig(0, Y(a))I = Ig(x(a), y(a)) - g(0, y(a))I < Ii(a)I M(R1 ,R2 ) * (4.8)

The assumed location of i(a) and the inequality a (RI,R2) < R1 implied by (4.6)
entail:

[R.2 - 2(R ;R<)] < k(a)I < R2  (4.9)

Combining (4.8) and (4.5') and (4.9), it follows that

14
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l ) I |y ( a) e-Y (_ )
- M(R1,R2 )
[RI 2(R 1 R2)J e/R2 (4.10)

> M(R 1 ,R 2 )

On the other hand,

X(a) u< R R < IR1 2 (R 1 ,R 2 ) /2e- R 2  (4.11)
I ~~R,2) M(R 1, R2)

where the first inequality in (4.11) holds because of the assumed location of i(a) and the
second inequality therein is implied by (4.6). The incompatibility of (4.10) and (4.11)
proves that no such zero i(a) exists.

In the proof of the next lemma, it is useful to write (1.1) in the form

A( z) = a + - + h( z), (4.12)
2z 2

employing the a-independent function

h(z)1 -1 7 /2ez 2erfc(z) (4.13)
2z2

If arg z lies in the closed angular interval [- (37T/4) + e, (37T/4) - e], we find, for example
from (4.13), (2.6), and (2.7), that h(z) = °( Z I -4) for Izi I CO. This order property of
h( z) and the closed nature of the said angular interval imply, via an elementary argu-
ment, that there exist two positive numbers, c = C(e) and RO = RO(E), independent of z

and such that

h(.)I < C (4.14)

lZ

when Izl > R0 and Iarg zI < (37T/4)- 6 < (37T/4).

Lemma 4.3. For any given , in the interval (0,7T/4), choose R, so that

R3 > max O' 2 ( (4.15)

and subsequently select a so that

O<4a3< (4.16)
-4R 2

Then A( z) has exactly one root in the region determined by the simultaneous inequalities

R3 < Z < w, (4.17)

2< arg Z < 34 (4.18)

15
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Proof, Let R4 be a positive number independent of a and z and such that, for any choice
of a > 0,

R4 > a/2

If a is chosen in conformity with (4.16), we evidently have

R3 < R 4 .

(4.19)

(4.20)

Hence, under the hypotheses of the present lemma, there exists a nonempty region
S = S(e,R 3 R4 ) of the z plane specified by the simultaneous inequalities

R3 < | zI < R 4

4 + e < arg z < 34 - e.

(4.21)

(4.22)

To prove the lemma, it is sufficient to show that, if the constants e, R3 , a, and R4
are selected as specified therein and in (4.19), then the inequality

| + 12 1 > h( z) (4.23)

holds for each point z of the boundary ABCB 'A'C'A of the corresponding region S (see
Fig. 1). In fact, if these four constants are so chosen, one finds trivially from (4.16),
(4.19), (4.21), and (4.22) that the sole zero possessed by the function a + (l/2z2) in the
region S is the zero located at the interior point i(2a) -1/ 2 of this region. Hence we
conclude from (4.12) and Rouch6's theorem* that, if (4.23) obtains on ABC B'A'C'A for
this choice of constants, then Lx(z) has exactly one zero in S, this zero being in the inte-
rior of S. Moreover, the fact that A( z) has no zeros in the half-plane Re z > 0 when

arg Z =37r -

4

Kt B

arg

Fig. 1 - Illustrating the region S (closed re-
gionbounded by ABsC'A'c'A) and the subregion
S, (semi-open region bounded by A'C'CB'A')
of S introduced ini the proof of Lemma 4.3

*See, for instance, Sec. 6.21 of Ref. 10.

16
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a > 0 means that this unique zero of A(z) in S is located in the subregion S1 of S de-
fined by the simultaneous inequalities (4.18) and (4.21) (see Fig. 1). But this result on
the zeros of A(z) in Si holds for arbitrarily large R4. Hence, under the hypotheses of
the lemma, it follows that A( z) has exactly one zero in the region specified by (4.17) and
(4.18), provided that (4.23) holds on ABCB'A'C'A under these hypotheses.

To establish that (4.23) is true in this sense, let us notice the simple but important
fact that (4.14) obtains for any z on ABCB'A'C'A. Indeed, (4.15) and our definition of S
inform us that (4.14) holds throughout the closed region S.

If z is in the circular arc A'C'A of radius R3, we find from (4.14) to (4.16) and from
the inequality I cos 2eI < 1, which certainly holds when e is chosen as specified in the
lemma:

2 9 2R 2 2R 2 4R 2 4 R 2

(4.24)

h(z) I < C <Cos 2e< 1
R3

4  4CR 2  4R 2

33 3

When z is in the circular arc B'CB of radius R4 , we conclude with the aid of (4.14), (4.15),
(4.19), and (4.20):

1 1 a a
+- a -a >a 2 a 2

(4.25)
C C Calcos 2es a

R 4  R 2 R 2  4C '4
4 3 4

Finally, if z is in either of the straight-line segments AB or A'B', we obtain from the
reality of a and from (4.14) and (4.15):

> I( Icos 2s1
2 z2 > | 2z 2 2 2zj

(4.26)

h(z) I < c < C <cos 2e
Iz14 R3

2 |Z12 -41z12

From (4.24) to (4.26), the desired inequality (4.23) is seen to hold on the boundary of
S under the said circumstances.

Theorem 4.1. For small enough a > 0, there are two and only two zeros of A(z) pos-
sessing the property of having a perpendicular distance to the imaginary z axis smaller
than that of all the other zeros of A( z). These two zeros are the zero zl(a) given by
Theorem 3.1 and the complex conjugate of this last zero.

Proof. We shall establish that, in the limit a - +0, there exists a positive constant v,
independent of a, such that the only two zeros of A(z) in the strip

-v < Re z < 0 (4.27)

are z (a) and z (a). This will prove the theorem by virtue of the cited fact that A(z)
has no zero in the half-plane Re z > 0 for a > 0.
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Let us start by choosing an e in (O,7r/2). In terms of the positive constants p, C(e),
and R0(e), let us then make the following choice of the a-independent constants R1, R2,
and R3

R= min {poR}a (4.28)

R2 = R3 = max{p, RobI 2 [(l ] (4.29)

Notice that (4.28) and (4.29) imply that o < RI < R2 and that R 3 obeys (4.15). Hence
these choices of e,, RI) R2, and R3 satisfy the respective hypotheses concerning these
three numbers in Lemmas 4.2 and 4.3.

We set

v = min {p, u(R1I R2 )} (4.30)

thus fulfilling the conditions that v should be an a-independent and positive number.
Finally, let us choose a > 0 so small that (4.16) and the inequality

-v < Re zi(a) < 0 (4.31)

both hold when v, R1 , R2 , and R3 are selected in accordance with (4.28) to (4.30). That
these two requirements are met by a sufficiently small a > 0 follows from (4.16), from
the fact that (3.9') implies that Re z,(a) - 0 as a -e +0, and from the a-independent
nature of R3 and v.

Clearly, (4.31) entails that A( z) has at least two zeros in the strip (4.27), namely
ZI(a) and z1 (a). I

Invoking Lemmas 4.1 to 4.3, Eqs. (4.28) to (4.30), and the circumstance that the
zeros of A( z) always occur in complex conjugate pairs, we easily infer that A( z) pos-
sesses at most two zeros in the strip (4.27) when a, R1, R2, and R3 are chosen in the
above way. This result and the one obtained in the previous paragraph imply that A( z)
has exactly two zeros in this strip under the stated hypotheses. Our proof of the theorem
is complete.
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